404 research outputs found

    Incremental planning to control a blackboard-based problem solver

    Get PDF
    To control problem solving activity, a planner must resolve uncertainty about which specific long-term goals (solutions) to pursue and about which sequences of actions will best achieve those goals. A planner is described that abstracts the problem solving state to recognize possible competing and compatible solutions and to roughly predict the importance and expense of developing these solutions. With this information, the planner plans sequences of problem solving activities that most efficiently resolve its uncertainty about which of the possible solutions to work toward. The planner only details actions for the near future because the results of these actions will influence how (and whether) a plan should be pursued. As problem solving proceeds, the planner adds new details to the plan incrementally, and monitors and repairs the plan to insure it achieves its goals whenever possible. Through experiments, researchers illustrate how these new mechanisms significantly improve problem solving decisions and reduce overall computation. They briefly discuss current research directions, including how these mechanisms can improve a problem solver's real-time response and can enhance cooperation in a distributed problem solving network

    Resource Allocation Among Agents with MDP-Induced Preferences

    Full text link
    Allocating scarce resources among agents to maximize global utility is, in general, computationally challenging. We focus on problems where resources enable agents to execute actions in stochastic environments, modeled as Markov decision processes (MDPs), such that the value of a resource bundle is defined as the expected value of the optimal MDP policy realizable given these resources. We present an algorithm that simultaneously solves the resource-allocation and the policy-optimization problems. This allows us to avoid explicitly representing utilities over exponentially many resource bundles, leading to drastic (often exponential) reductions in computational complexity. We then use this algorithm in the context of self-interested agents to design a combinatorial auction for allocating resources. We empirically demonstrate the effectiveness of our approach by showing that it can, in minutes, optimally solve problems for which a straightforward combinatorial resource-allocation technique would require the agents to enumerate up to 2^100 resource bundles and the auctioneer to solve an NP-complete problem with an input of that size

    Security Attributes Based Digital Rights Management

    Get PDF
    Most real-life systems delegate responsibilities to different authorities. We apply this model to a digital rights management system, to achieve flexible security. In our model a hierarchy of authorities issues certificates that are linked by cryptographic means. This linkage establishes a chain of control, identity-attribute-rights, and allows flexible rights control over content. Typical security objectives, such as identification, authentication, authorization and access control can be realised. Content keys are personalised to detect illegal super distribution. We describe a working prototype, which we develop using standard techniques, such as standard certificates, XML and Java. We present experimental results to evaluate the scalability of the system. A formal analysis demonstrates that our design is able to detect a form of illegal super distribution

    Use of Markov Chains to Design an Agent Bidding Strategy for Continuous Double Auctions

    Full text link
    As computational agents are developed for increasingly complicated e-commerce applications, the complexity of the decisions they face demands advances in artificial intelligence techniques. For example, an agent representing a seller in an auction should try to maximize the seller's profit by reasoning about a variety of possibly uncertain pieces of information, such as the maximum prices various buyers might be willing to pay, the possible prices being offered by competing sellers, the rules by which the auction operates, the dynamic arrival and matching of offers to buy and sell, and so on. A naive application of multiagent reasoning techniques would require the seller's agent to explicitly model all of the other agents through an extended time horizon, rendering the problem intractable for many realistically-sized problems. We have instead devised a new strategy that an agent can use to determine its bid price based on a more tractable Markov chain model of the auction process. We have experimentally identified the conditions under which our new strategy works well, as well as how well it works in comparison to the optimal performance the agent could have achieved had it known the future. Our results show that our new strategy in general performs well, outperforming other tractable heuristic strategies in a majority of experiments, and is particularly effective in a 'seller?s market', where many buy offers are available

    Defect and Hodge numbers of hypersurfaces

    Full text link
    We define defect for hypersurfaces with A-D-E singularities in complex projective normal Cohen-Macaulay fourfolds having some vanishing properties of Bott-type and prove formulae for Hodge numbers of big resolutions of such hypersurfaces. We compute Hodge numbers of Calabi-Yau manifolds obtained as small resolutions of cuspidal triple sextics and double octics with higher A_j singularities.Comment: 25 page

    Chen-Ruan cohomology of ADE singularities

    Full text link
    We study Ruan's \textit{cohomological crepant resolution conjecture} for orbifolds with transversal ADE singularities. In the AnA_n-case we compute both the Chen-Ruan cohomology ring HCR([Y])H^*_{\rm CR}([Y]) and the quantum corrected cohomology ring H(Z)(q1,...,qn)H^*(Z)(q_1,...,q_n). The former is achieved in general, the later up to some additional, technical assumptions. We construct an explicit isomorphism between HCR([Y])H^*_{\rm CR}([Y]) and H(Z)(1)H^*(Z)(-1) in the A1A_1-case, verifying Ruan's conjecture. In the AnA_n-case, the family H(Z)(q1,...,qn)H^*(Z)(q_1,...,q_n) is not defined for q1=...=qn=1q_1=...=q_n=-1. This implies that the conjecture should be slightly modified. We propose a new conjecture in the AnA_n-case which we prove in the A2A_2-case by constructing an explicit isomorphism.Comment: This is a short version of my Ph.D. Thesis math.AG/0510528. Version 2: chapters 2,3,4 and 5 has been rewritten using the language of groupoids; a link with the classical McKay correpondence is given. International Journal of Mathematics (to appear

    Mobile Robot Navigation by Distributed Vision Agents

    Full text link

    Book Reviews

    Get PDF
    Cases on Quasi Contract, by Edward S. Thurston. American Case Book Series. St. Paul: West Publishing Co., I916; pp. 622

    Search reduction in hierarchical distributed problem solving

    Full text link
    Knoblock and Korf have determined that abstraction can reduce search at a single agent from exponential to linear complexity (Knoblock 1991; Korf 1987). We extend their results by showing how concurrent problem solving among multiple agents using abstraction can further reduce search to logarithmic complexity. We empirically validate our formal analysis by showing that it correctly predicts performance for the Towers of Hanoi problem (which meets all of the assumptions of the analysis). Furthermore, a powerful form of abstraction for large multiagent systems is to group agents into teams, and teams of agents into larger teams, to form an organizational pyramid. We apply our analysis to such an organization of agents and demonstrate the results in a delivery task domain. Our predictions about abstraction's benefits can also be met in this more realistic domain, even though assumptions made in our analysis are violated. Our analytical results thus hold the promise for explaining in general terms many experimental observations made in specific distributed AI systems, and we demonstrate this ability with examples from prior research.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42828/1/10726_2005_Article_BF01384251.pd

    Atom Interferometers

    Full text link
    Interference with atomic and molecular matter waves is a rich branch of atomic physics and quantum optics. It started with atom diffraction from crystal surfaces and the separated oscillatory fields technique used in atomic clocks. Atom interferometry is now reaching maturity as a powerful art with many applications in modern science. In this review we first describe the basic tools for coherent atom optics including diffraction by nanostructures and laser light, three-grating interferometers, and double wells on AtomChips. Then we review scientific advances in a broad range of fields that have resulted from the application of atom interferometers. These are grouped in three categories: (1) fundamental quantum science, (2) precision metrology and (3) atomic and molecular physics. Although some experiments with Bose Einstein condensates are included, the focus of the review is on linear matter wave optics, i.e. phenomena where each single atom interferes with itself.Comment: submitted to Reviews of Modern Physic
    corecore